Рейтинг@Mail.ru
HighLoad++ 2016 завершён. До встречи в 2017!

Профессиональная конференция разработчиков высоконагруженных систем

Москва, СКОЛКОВО,
7 и 8 ноября
Архив
2015
года
Конференция прошла в этом году уже в десятый раз и собрала 2500 участников. Мероприятие направлено на обмен знаниями о технологиях, позволяющих одновременно обслуживать многие тысячи и миллионы пользователей.

ГлавнаяHighLoad++BigData и машинное обучение

Семантическое ядро рунета - высоконагруженная сontent-based рекомендательная система реального времени на базе Amazon Kinesis/Lucene
BigData и машинное обучение

Доклад принят в Программу конференции
1С-Битрикс

Окончил Донской Государственный Технический Университет.
Работал советником в Администрации Президента России по Южному федеральному округу, в Юго-Западном банке Сбербанка России, ведущим разработчиком веб-студии QSoft и главой отдела разработки компании «Софтлайн Интернет Трейд».

В «1С-Битрикс» курирует направление контроля качества интеграции и внедрений, активно участвует как архитектор и разработчик в проектах компании, связанных с высокой нагрузкой и отказоустойчивостью («Битрикс24»), консультирует партнеров и клиентов по вопросам архитектуры высоконагруженных решений, эффективному использованию технологий кластеризации продуктов «1С-Битрикс» в контексте современных облачных сервисов (Amazon Web Services и др.).
Эксперт в области BigData, разработки программного обеспечения, системного анализа и проектирования.
Постоянный спикер отраслевых конференций и семинаров по интернет-тематике («РИФ+КИБ», RIW, HighLoad, РИТ++, CodeFest, FailOver Conference и др.).

Тезисы

В докладе мы поделимся опытом создания content-based рекомендательной системы для электронной коммерции, работающей на семантическом ядре рунета (десятки миллионов профилей). Расскажем, как организовали централизованный сбор и обработку информации о посещении пользователями более 100 000 сайтов различной направленности на основе Amazon Kinesis. Поделимся опытом многопоточной онлайн-индексации потоков данных в Lucene. Продемонстрируем используемые базовые алгоритмы ранжирования и формирования персональных рекомендаций для посетителей более 20 000 интернет-магазинов.

Поговорим о плюсах и минусах лямбда-архитектур и обоснуем выбранное нами архитектурное решение. Отдельно остановимся на тонкостях технической реализации многопоточных алгоритмов и особенностях обеспечения реального времени - поступившая информация о действиях посетителя практически мгновенно учитывается рекомендательным движком, обеспечивая максимальную конверсию.

Бронирование билетов
Вы можете забронировать себе билеты уже сейчас — чем раньше Вы это сделаете, тем лучше, ведь цена на билеты постоянно растёт. Бронь вас ни к чему не обязывает, после бронирования у Вас будет пара недель на принятие решения об оплате.
ЗАБРОНИРОВАТЬ БИЛЕТЫ
Остались вопросы?
Спроси по телефону у контактного центра: +7 (495) 646-0768
Или напиши письмо в службу поддержки: support@ontico.ru
Rambler's Top100